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Abstract. We study persistent currents in a gas of interacting electrons confined to a quasi-one-
dimensional disordered ring at arbitrary temperatures in two experimentally available regimes:
at a fixed chemical potential and at a fixed number of particles. In a realistic experiment, the
interelectron Coulomb interaction in a gated ring is unscreened and the potential of impurities
is a smooth function of coordinates. The latter allows us to study the persistent current non-
averaged over impurity realizations in a small ring. In a quasi-one-dimensional electron gas,
only forward- and back-scattering processes are relevant. The forward-scattering amplitude of
the Coulomb field enhances the persistent current at a fixed chemical potential but does not affect
it at a fixed number of particles. The Coulomb backscattering suppresses the intrinsic disorder
and enhances the persistent currents at both a fixed chemical potential and a fixed number of
electrons. Increasing the number of transverse channels enhances the persistent current at strong
Coulomb repulsionz2/hVe > 1.

Strong Coulomb interaction cancels out oscillations over the electrochemical potential. The
parity effect at a fixed number of particles is defined by the average occupation of a single
channel.

The non-monotonic temperature dependence of a persistent current is predicted.

1. Introduction

Persistent currents in thin conducting rings pierced by magnetic flux are the manifestation
of the Aharonov—Bohm effect (ABE) in many-particle systems [1, 2]. The wavefunction of
the conduction electron, which encircles the ring, acquires the phase shift

A® 2 ®
_B = 4T —
A—B (DO
where ® is the magnetic flux anedg = hc/e is the magnetic flux quantum. As a result,
all the thermodynamic quantities oscillate with the flux, the period of oscillations kijng
The persistent current(®) is the derivative of the free energy over the magnetic flux:

dF
J(®P) = —2% (1)
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i.e. it is the oscillatory component of the magnetic moment. In non-superconducting rings,
the ABE is mesoscopic; the persistent current magnitude tends to zero when the ring
perimeter L increases to infinity. The thermodynamics of persistent currents in a one-
dimensional impurity free ring containing a gas of non- interacting electrons was first studied
in [3]. Later, in a series of papers [4], the effect of impurities on the persistent current in
a free-electron gas was studied within the diffusion approximation. This approach was
believed to describe a multichannel ring the width of which was large compared with the
conduction electron wavelength. The experiments [5, 6] demonstrated, however, that the
free-electron model failed to describe adequately the persistent current in a disordered ring,
and it has been understood [4] that the Coulomb electron—electron interaction has to be
incorporated non-perturbatively into the theory to match it to reality.

A theory of persistent currents for correlated electrons in dirty rings is still being
considered; the majority of results are obtained for various models of one-dimensional
(single-channel) rings at zero temperature [7-11, 14, 15, 24].

In the meantime, there does not exist a commonly accepted point of view on the interplay
of Coulomb interaction and disorder; Abrahams and Berkovitz [7] claimed that the persistent
current is either enhanced or suppressed depending on the ratio of the Coulomb parameter
to the strength of disorder; Bouzermitral [8] stated that the interelectron interaction always
suppresses the persistent current; Chakraborty and Pietilainen [9] and Chakraborty [10]
declared that the Coulomb parameter does not affect persistent currents at all; it has been
shown analytically in [11] and numerically in [15, 24] that interaction enhances the persistent
current.

All the above-cited papers treated the problem at zero temperature. The effect of the
Coulomb interaction and a single local impurity on a persistent current at finite temperatures
was studied in [28] for a one-dimensional Wigner crystal.

In this paper we present a theory of persistent current in a two-dimensional gas of
interacting electrons confined to a disordered ring of finite width at finite temperatures.
The model chosen is believed to describe adequately the low-channel ring formed in an
Al,Ga_,As/GaAs heterostructure [16]. The disorder potential is supposed to be a smooth
function of coordinates because of a large concentration of impurities. We have obtained
analytical results in the limit of a small number of channels at a strong Coulomb repulsion
(€?/hVE > 1) atlow (T « To/m) and high(T > To/m) temperatures, wherg) =7V /L
is the spacing between the quantized electron levels in a one-dimensional ring [3, 4].

We have studied two realistic situations: firstly a fixed chemical potential and secondly
a fixed number of particles in a ring. In the first case, both energy and particle exchange
with the reservoir is allowed. The second limit corresponds to an isolated ring. In practice,
the choice between these possibilities is regulated by the ratio of the mean level spacing
e to the normalized capacitance energd/L; when Le/e? > 1, particle exchange is
allowed and, wherLe/e? « 1, it is suppressed (Coulomb blockade). Formally, these two
limits correspond to a description within the grand canonical and the canonical ensembles,
respectively.

In a quasi-one-dimensional conductor the Coulomb interaction is presented as a sum
of forward- and back-scattering potentials. The strong forward scattering enhances the
persistent current at a fixed chemical potential in a twofold way; it makes the current
proportional to the number of transverse channels and increases the crossover temperature
T*(> To/m). At a fixed number of particles, the forward scattering does not affect the
persistent current.

The Coulomb back scattering increases the persistent current independent of the choice
of ensemble; it suppresses the intrinsic localization of electrons and creates the new
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temperature-dependent localization length which is much larger than the bare value. At
T > T¢, Tc is a function of Coulomb and disorder parameters; the persistent current
reaches its value in a pure metal.

Increasing the number of transverse channels enhances the persistent current at a strong
Coulomb interaction.

Strong Coulomb fluctuations suppress oscillations over the electrochemical potential.
At a fixed number of particles, the parity effect is defined by the occupation of a single
channel.

2. Mathematical formalism: the model

We study the two-dimensional electron gas in a ring-shaped conductor of a rdind
width d(r < R), created from a gated semiconductor heterostructure and placed in a vector
potential. In such a system the interelectron long-ranged Coulomb interaction is relevant.
Whenkrd ~ 1, the electron gas is of a quasi-one-dimensional naturey 1, where
M is the number of zeros of the radial component of the wavefunction (the number of
channels).
First of all, derive the effective Hamiltonian for quasi-one- dimensional electrons starting
from the Hamiltonian of electrons on a lattice:

+ +
n ; " 2 (A Oro ) (i A7) i
H =1 E (a;, artioe'* +HC)+ E Veal ars+e E rg re —eV, E a, are
.o r,o r,r r,0o

lr — 7|
0,0’

= Hp+ I—Iimp + Hcoutomb- (2)

Here the first term describes intersite electron hoppint the hopping amplitude and;,
is the electron creation operator at the sitaith the spino; the second term describes the
scattering of electrons by impurities; the third term is the interelectron Coulomb interaction;
a = (eA - 1)/hc andV, is the gate voltage.

In the quasi-one-dimensional limit, all the electrons are classified in terms of right- and
left-moving particles:

amj = Yr(mj) expikpma) + Y (mj) exp(—ikpma) 3)

wherem is the site index along the perimeter of the ring ghthat in the radial direction;
a is the lattice spacing (in what follows, we plt=c = a = 1).

The amplitudes/r ;, are smooth functions of coordinates which allow us to linearize
the electron spectrum in the vicinity of the poiits= +kr. In terms of they fields the
Hamiltonian H, takes the well known form (see, e.g., [17])

n2n?

Ho = ;/dx {w/_fyow +iVEYy1(dx —ieAd)y + P—r

erow} R

Herey denotes a spinor:

v=(v) ®

Yro = Yr.o(n, x), v = ¥y, (yo,iy1) are Pauli matrices and = kyVy — eV,.
When deriving the low-channel representationH,, and Hcouoms, ONE has to keep
only Fourier harmonics with the wavevectbr= 0 (forward scattering), and = +2kp
(back scattering). The driving motive for such an oversimplification is that the impurity
potential in the case of interest is created by scattering centres which lie outside the plane
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of the two-dimensional gas, and their influence on the electronic states in the ring is solely
through a long-range Coulomb potential. As a result, the impurity potential in the ring is
smooth on the scale of the Fermi wavelength, and the Hamiltonian for electron—disorder
interaction takes the form

Hinp = 3, [ @ Guanp iy = 89) (6)

wherep;.,, is the forward- and\ is the back-scattering amplitude. In what follows we study
the realistic case of a high concentration of impurities when bojy and A vary slowly
on the ring lengthL, and thus the persistent current is not self-averaged over realizations
of the impurity potential. We neglect the interchannel transitions.

When M =~ 1, the Hamiltonian of electron—electron interaction takes the form

HCoulomb = eZZ/dx/dx/ (w);m//)xna(wyow)x’n’a’

lx — x|

n,n
0,0’

+etlog(@he) 3 [ de (5900 (G0 @)

where the first term on the right-hand side of (7) describes the forward scattering, and the
second term the back scatteririg= d.

It should be noted that, when modelling the Coulomb interaction, we substitute the ring
geometry by a line. Such a substitution can be justified only for a long fing; d.

2.1. Partition function: general formulae

It is convenient to present the grand partition functiof.) in the form of a path integral
over the Grassman variablgs and, [18]:

Z(pn) = / Dy Dy expS = / Dy DYy Dy, DY expS = Z4 Z, 8

where S is the Euclidean action:

L B ~
S:;/c; dx/o dr V9. — H. (9)

Here z is the imaginary time an@g = 1/T is the inverse temperature.
We introduce integration over auxiliary fields [18] to decompose the four-fermion
operators in the Coulomb Hamiltonian:

2
expScoutomp = / Dy Dx exp( -> / dx dr {[fﬂ(Oo)(ﬂ] — 2eYyo¥ + x? + XJ/I/f} )

(10)
where
g = e?log(2kpb) (11)
and the operato0 is
éo = xzaf + 2x 0,
éoi = —28(x). (12)

|x]
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Eventually, the partition function (8) takes the form of a Gaussian integral:
Z(w) =/D¢DWD(/)DXeXp{ Z/dxdrwéow— }Z/dxdrxz
n g n
+ Z/dx de i/ [yo(d: — i — 2e9) — iy Vi (dx —ieA) + (A — X)]llf} (13)

wherey is given byu, = i + 72n?/2m*d?, m* is the effective mass of the electron.
Let us obtain the expression for the canonical partition functia®v). The grand
partition functionZ(u) is expressed through the series expansion

N
Z(w) = Zexp(“T) Z(N) (14)
N
which gives
uNo unN
Z(No) exp(T> - XN:(SN,NO exp(T) Z(N)
= 2 7 expione S zavy exp( MY —inn (15)
_Z/_,, ot o); (V) p(T—
ie.
Z(No) = % exp(—'uTNo) " Z(w — iAT) exp(irNo) (16)

whereu = 1 (Ng). Equation (16) allows us to calcula# Ny) if one knowsZ ().
For spinless electrons, equation (16) solves the problem and, for an electron with spin,
one has to add the conservation condition

No=N; + N, (17)
to the equation
Z(No) = Z(Ny)Z(N)). (18)

2.2. Partition function in a low-channel limit

After integration over the Grassman variables the partition functions take the form

L B R
Z(M):/D(pDAeXp(—Z/O dx/0 dﬂﬂOo‘P)

1 L Z . .
x exp( - Z/ dx/ dr(A + A)2> exp(3Splog K) (19)
8 5 Jo 0
where
A= X — A (20)
K = —(8; — jt — 2e9)® — V20, —ieA)? + 2ieVrysd, ¢ + 2ed.¢ — iy1Vpd, A
+y00; A + A2 (21)

¥5 = Yoy1, I-€. (Jo, i1y1, ¥5) form a complete set of Pauli matrices, and

SpO =Tr (Z/dxdr <xm|Q|xm>) (22)
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where symbol Tr is the trace over the matrix indices. In what follows we make use of the
representation (see, e.g., [19])

SplogK = —¢'(0) — ¢£(0) log C3
operatork:

(23)
HOED I

where the generalized zeta function is the sum over the powers of the eigenvalues of the
where

I%na = )wna

(24)
(25)
and{n,} is a complete set of eigenfunctions afig is a cut-off. )
One can calculatg(s) in the limit of slowly varying fieldsy and A. To obtain the
criterion, we presenfp log K in a perturbation series over gradients:
SplogK = Splog Ko + vﬁ/dxdx’dz dr' )

_ i} 1 i}
{(3XA)(3x'A) + —(0: )0 A)
n,n’ VF
2 462
+4e°(0,9) (0:¢") + W(arfp)(at’(p)
F
where the operatoKy is

} G,(xt|x' )Gy (xt|x't) (26)

Ko = —(0; — it — 2e9)? — V2(0, —ieA)? + A2,

(27)
In a low-channel limit,G,, scales as

min (L VF) min(ﬁ 1>
.x Q—‘J s = T % s = .
° A 0 A

side of equation (26) takes the local form

In equation (27), the fieldp and A are supposed to be constady; (xt|x't’) is the Green
function of a two-dimensional Helmholtz operator.
The expansion is justified whest/ Vr > 1; in this limit the second term on the right-hand

(28)
3x2(0,:9)° + 3T2(0:0)% + 322 (39, A)% + 3753 A)?
where

2

(29)
e 1/2 €2 1/2
.x(p o 7 X0 T(p ~ 7F 70

(30)

R in a pure ring
&2 /

F X0 A in a disordered ring

a2 [T in a pure ring
s (0) ]
ATy A
VF Toy] —
A

(32)
in a disordered ring.
The spatial derivative, u;,,, can be neglected under the conditicy),,xo <« 1, whereC,,,,,
is the concentration of impurities.
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Eventually, ate?/ Vi >> 1, the partition function of a low-channel ring takes the form

L B
Z(w) =/D(pDAeXp<—M/ dx/ dr ((pOA(p(p))
0 0
M L B _ L B A -
XeXIO(—/ dx/ dr(A+A)2>exp<—M/ dx/ dt(AOAA))
8 Jo 0 0 0
1 .
X exp(ZSp log K) (33)

where theO operators take the form
OAA = ‘[Aaf +XA83
A 272 2 2\q2 (34)
0y = 7,07 + (x; + x°)0; + 2x0,.
The eigenfunctions otf)(p are the Legendre functions of imaginary argumeht§x /x,).
Integration over auxiliary fields is a one-dimensional problem; the non-trivial effect of

a finite number of channels is hidden in the). A
The generalized zeta function for the operakoiis

Moo & 1\ .V 4n?v? PN,

;(s)ZZO _Z:OOI_Z {(271T(m+2)+l,un> + 7 (1—%> + A } (35)
n=0m= =—00

Here 2t T(m + %) is the Matsubara fermion frequency ahds the azimuthal quantum

number. It is convenient to perform the summation over channels (Qadter calculation

of the one-dimensiondl(s).
To calculate the one-dimensionals), apply the Poisson summation formula

s(s) = (ZnT)*Zf%/ dmdz(m2+12+z2)*s+2(2nT)*25%/ dm di
0 _

—00 0 00

2, co92nplT /Ty + 2rpd/ Do)
X2

T o0
2027 T)™> —
D TR 2 TO/_oodmdl

p=1

2, cos[2rkm — i(u/T)k — kx T [
x 3 [2rkm = i(u/T) ]+4(2nT)—2YTO/_OOdmd1

e (m? + 12 4 z2)*
2\ cos[2rkm — i(u/TYk — kn]coS(2nplT | To + 2 p®/ D)

<Y : (36)
pre} (m? + 12 4 z2)*

whereZ = A/27T and Ty = Vi /L.
The function¢ (s) is calculated in appendix 1.

3. Persistent current at a fixed chemical potential

Making use of equations (Al.2), (A1.3), (Al.5), (A1.10)—(A1.13), (A1.17) and (A1.18), we
present the persistent current in the form

J(®) = (J(D, A, p)) (37)
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where

L B
(J)y = [/Dq)DAexp<—/ dx/ dr F0> JP(p, A)}
0 0
- L ﬂ - -1
x[/Dcp DAexp(—/ dx/ dr Fo> P(yp, A)} (38)
0 0

A2 | Cg M1
Fo= M - - 2
0= or v, Og(max(A ZnT)) 27V HZ(“ n T 2e9) (39)
P((p,A)_eXp( M/ dx/ dr < +¢0¢¢)+*(A+A) >) (40)
and
T SN sin@rpd/ @o) cos[ (1, + 2e¢)/ Tol p) <
qT Z z::o sinh(zpT/ To) AT (41a)
4T, i MZ Sin2 p®/ ®o) cos[(wn + 2e9)/ Tol p}
0 p=1 n=0 p
ATy, [=T (T ) A
(ool
J = M_lcos('u” + 29 T<ALTy, (41b)
2 o5 o0 (2 )3 e ( )
o T,
T [T (T? —3/4
To X <T2 + 1 exp
M-1
x> cos('u”;zw> T.To < A.  (41c)
n=0 0

The summation over spin has already been performed in equations (39) and (41).
The current/o(®) = J(®, A = A, ¢ = 0) is simply the persistent current in a gas of
non-interacting electrons whose spectrum is

= (47°Tgn® + A*? (42)
wheren is an integer. The persistent current is sensitive to disorder whel> T
(equation (41)) [22]. WhenA « Tp, or at high temperatures whex « T, the persistent
current reaches its value in a pure metal (equations)(dhd (4)). In the leading order

in 1/L, the path integral oven is defined by its saddle trajectory; the extremum condition
at 7T « A takes the form

) (A + A)? A? 1 A? -
— 1= — | = logA} =0. 4
(SA { 8 27'[ VF Og CR + 2 + 27'[ VF Og 0 ( 3)

The non-trivial solutionA = A to (43) exists when

- A
AO<<§<<A<<CR%/L
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whereR = g/27Vy, and Ag has the form

Ao ~ 1 ex < A > (44)
0 Hexp NAO .
For A <« T, one can easily derive the term* in the free-energy functional (39) and
confirm that there exists the critical temperat@e

A
Te = =2 expC (45)
T

whereC is the Euler constant. F&f > T, Ag = 0 and

Ao(T) ~ Ao, [1— r (46)
Tc

whenT, — T < Tc.

In a pure ring whemA = 0, integration overA does not affect the persistent current at
zero temperature in accordance with the general theorem [15].

In the above calculations we have put the impurity fiald= constant. This assumption
is justified at a large concentration of Coulomb impurities located in the bulk of a
semiconductor (appendix 2). Under this condition which holds in an actual experiment,
the persistent current has exponential asymptotes at low temperatures in contrast with a
power law specific to a local impurity model [26, 27].

Eventually, the persistent current takes the form

_ . 1 M-1
J(®) = / DoJ (Ao(T). ¢, @) exp( — Mfdxdr 90,0+ - Y (n + 29)? ) ).
2 VF =0
(47)
In our model, the operatoéw is scale invariant (see equation (34)), and the shift
Un + 2ep — 2eqp gives rise to thep-field massmg:
2¢°
2
= . 48
my v (48)
The operator),, transforms into
0 =07+ (14 y*92 + 2yd, —m} (49)
wherey = x/x,, t = 1/7,.
The eigenvalues 0D are determined from the condition of the absence of divergence
aty — oo [21], i.e.
Map =n(n+ 1) + Q5 —mj (50)
where Q, = 2npT1,, and p andn are integers. Integrations over are performed by
making use of the well known formula [18]

/D(pexp(—/dxdr(q)éga—i—&p))

= (det0)*/? exp(}1 / dx dx’ dz do'R(x, 7)G (xT|x'T)R(x’, r’)) (51)
where
N ©n(Men(y) . '
G(yt|y't) = i expli2, (r —19)]. (52)
T¢x§0 n,p T]n,p
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The coefficient® in our case (equation (47)) is

2
R=+iT (53)
Vi
because
2 L p
cos(w) = cos(&f dx/ dr (p). (54)
To 0 0
Finally

(cos( %22 )) = exo( -

Whenx,/L >3 1 (a limiting case of a strong Coulomb interaction), only the zero mode
10,0 = —mg contributes to the Green function (52). The zero-mode eigenfunctions are

e2T?
V2 f dx dx’ dr dr’G(xr|x’r’)) ) (55)
F

1
po(x) = ﬁ

and equation (55) takes the form

2ep\\ _ nT
() =o0(- )

i.e. thep Coulomb interaction enhances the persistent current.
The crossover temperature At Ag (equation (4&)) is
To
C1-1/2M°
When M = 1 (strictly one-dimensional ring), we restore the doubling of a crossover
temperature at strong Coulomb repulsion, first obtained in [13].
Equation (56) shows also that integration overghiéeld at zero temperature cancels out
the oscillatory dependence gnandV, ({(cogu/To)) = 1 in equations (44) and (4%)). The
bottom line is trivial; the renormalized oscillations frequency is roughl§ole?/ Ve + 1)
which is zero to leading order ie?/ Vy > 1.
To emphasize the main points, compare the persistent currents in a Coulomb gas and in
a free gas (figure 1).

T* (57)

(1) Increasing the numbe¥ of channels decreases the non-averaged persistent current
of free electrons (equation (41)) by a small factdy /krL <« 1 [23]:

M
Jo(®)~ Jo(O, M =1, T)———. 58
o(®) ~ Jo( )\/kFT (58)
The averaged persistent current is proportionalMé? [4]. The Coulomb interaction
prohibits fluctuations in the number of particles in different channels, thus increasing the
transverse rigidity of the electron gas. Fdr < ¢?/Vy we get

Jo(®) ~ MJo(®, M =1,T) exp( T (59)

2MR>
i.e. increasing the number of channels enhances the persistent current of interacting electrons
proportional toM. The crossover temperature also increases (equation (57)).

(2) Impurities always suppress the persistent current; they define the characteristic
temperaturef;,,, below which the persistent current is exponentially suppressed provided
that7;,,, > To. If T;,,, < To, the disorder suppression of the persistent current is negligible.
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Figure 1. Temperature dependence of the persistent current at various parametedsio for
a fixed chemical potential: curve 1, non-interacting gas« A = A1; curve 2, non-interacting
gas,A = Ay « To, curve 3, Coulomb gasho = Ag1, To < Ao1 < A; curve 4, Coulomb gas,
Ao = Aoz, Az € To € A.

In a free gas[t;,, = A and, in a Coulomb gag;,,, = Ao < A (equation (44)). So, the
Coulomb renormalization of;,,, favours enhancement of the persistent current.

(3) The persistent current in a free gas manifests an oscillatory dependence over the
gate voltage [3, 4, 13]; theth harmonic ofJy is proportional to

N eV,
COS(pJTM) COS<pTO> (60)

where N is the number of electrons in the ring at a given electrochemical potential. A
strong Coulomb interaction cancels out this dependence.

4. Persistent current at a fixed number of particles

At a fixed number of electrons, equation (38) takes the form

L B
(J(P))n, = [/ Do DA | dr expiANo) exp( —/ dx/ dr Fo> JP(p, A)}
- 0 0

bid L B -1
x|:/Dg0 DA/ dx exp(irNg) exp(—[ dx[ dr Fo) P(p, A)}
r 0 0

(61)

b2

whereu in equations (39) and (41) is substituted foy- iAT (equation (16)).

One has to be careful at this point because the naive ghift ¢ + u/2e — AT /2¢
causesZ(Ng) to become zero, and so the order of operations is relevant; first, one has to
carry out the integration over and then to shift the— field in the functional integral.



1532 A S Rozhavsky

We make use of the asymptotic equality

[/ dx eXp(”»No + 2nTTo Xn:(un + 2eq —iAT) ) cos(TO)}

b4 ] 1 . 5 -1
><|:/_7r da exp(lkNo + oxTTy ;(Mu + 2e¢ —iAT) >:|

No
= T (62)
ex — T T.
p (n 2T0> o0 K

Equation (62) shows that at low temperatures the non-trivial parity effect takes place; the
sign of a persistent current is defined by the occupation of a single channel. For an electron
with spin, the parity effect is ill defined because the persistent current is proportional to

(j (D)) cos(7 1) + cos( 7 ¢
~ T— —
JAB) o M M
N, + N; = No (63)

and the differencev, — N, is a free parameter, which has to be additionally fixed by the
magnetic field.

At high temperatures the parity effect is smeared out and the crossover temperature
doubles [12, 25].

The integrand/ in equation (61) turns out to be independent of ¢ghéeld; therefore
(J (D)), is proportional to the number of channels.

Integration over theA field gives the same result as in the case of the fixed chemical
potential.

So, the only principal distinction between the persistent currents in a free gas and in a
Coulomb gas is the value of the localization gap:in a free gas, and\o(T) < A in a
Coulomb gas.

5. Conclusion

In this paper we have studied analytically the persistent currents at finite temperatures in a
gas of electrons interacting via a long-range Coulomb field in a disordered thin ring.

The Coulomb interaction always enhances the persistent current in a twofold way:
firstly its 2k component suppresses intrinsic disorder and the renormalized localization gap
becomes zero &t = T; secondly its zero-momentum component increases the ‘transverse
rigidity’ of a gas: the persistent current turns out to be proportional to the number of
transverse channels; the crossover temperature increases at a fixed chemical potential.

The effect of Coulomb back scattering exists at both a fixed chemical potential and a
fixed number of electrons in the ring. The forward scattering does not affect the persistent
current at a fixed number of particles.

At a fixed chemical potential the strong Coulomb interaction cancels out oscillations
over gate voltage which exist in a free gas. At a fixed number of particles a non-trivial
parity effect emerges; the sign of a persistent current is defined by the occupation of a single
channel.

At certain values of parameters, the temperature dependence of the persistent current is
non-monotonic.
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Appendix 1
Here we calculate the one-dimensiog&l) (equation (36)) and functions(0) and ¢’(0).
Trivial integration yields

2-2s

B _sz z > @ 1 s—1
¢(s)=2rT) To{ns 1 + 4 7? I'e) ZCOS(ZTL’[) )(n Topz> K

T
x <znTO pz) + 4nz,2*2‘m Z(—l)" cosh(?k) (kz)* Ky (2mkz)

k=1

L 1 & ) (—Dk coshfu/T)k]
+87TZZ Zsﬁs) ;COS(ZTCP)

Kl—x
(7TZ /k2+p2T2/T02)1—s

X(ZJTZ /k2+p2§:§)} (A1.2)
0

whereI'(s) is the gamma function and, (y) is the McDonald function. It is easy to see
that

%;(O) = —mz? (A1.2)

and

Tc To X cog2npd/d T
9:0) = —m 724772 |ng2+nzzlog[(2nT)2]+470z > M/O)K1<2npz)

p=1 p TO

00 vk
+4ZZ( 1)* coshf(u/ T)k]

A Kl(ZTt'kZ)

k=1

k 2
+8chos( )( ;Mk] (an [k2 +p2;z).
() k2+p2T2/T2 0

(A1.3)

First, we calculate the asymptotics of (Al.3)zat 1, making use of the equation
1
Ki(y)ly«1 = y + 5 logy (Al.4)

and recalling thaj./T > 1.
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We get [20]
1 & coshfu/T)Hk] ' 00 M )
EI;T( 1) +nzlogsz=;COSh ?k (=1

b4 1 /n 2 3 %
=—-——-"—(Z) - Znzl -= 1 Al.
oa 87rz(T> 572 ogz+0[exp< T)} (A1.5)

To calculate the sum

>, coshfu/T)k] ‘
F(p) = — (-1 Al.6
(1) ; iz D (AL1.6)
we compose the differential equation
’F
a2 +a’F = -} (A1.7)
with the boundary conditions
b4 1 1
FO) = ——— — —
© 2a sinh(ma)  2a?
dF (A1.8)
— =0.
di |0
We get
F (ﬁ) = F@O + i cos(ﬁa) — i (A1.9)
T 2a? T 242" '
Making use of equation (A1.9) we eventually obtain
T\ & cog2rpd/ d o0 @\ (=1 coshfu/T)k
(o) ZCOS( il /o) —i—ZZCOS(an)( z cos2 Kf/ 2) ]
T) 4 p ~ Do) k2+ p2T?/ T
k=1
To &= 2npd/ D
=20 Mcos ﬁp . (A1.10)
T = p sinhzpT / Tp) To

Equations (A1.5) and (A1.10) solve the problem wheng T, T,. Now we turn to the

asymptotics of equation (A1.3) at,/1/T2+ 1/ TO2 > 1. To calculate the asymptote of the
fifth term in equation (A1.3), we make use of the integral representation [29]

Ki(2rkz) = ? /O d’gz:#kz?z)s/z' (AL.11)
We get

21 K wN.. 1w 3 m

; ﬁ(_l) cos(tk) cos(Fk) =57 + 1—600& exp(—?) (Al1.12)
and
4z ; (-1 Coskhk“/T)k] K1(2m2k) = —% (%)z 1 O(exp(—277)). (A1.13)

Calculation of the last term in equation (A1.3) is slightly more cumbersome. We present it
in the form

47 & @\ d & (=¥ coshfu/T)Hk] ( T2>
—— ) cos|2np— | — Kol 2 k2 2_ Al.14
= ; ( ””cpo)dz k; 2+ pery 1z O\ T T P (AL.14)
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and make use of the integral representation [29]

T2 T T\Y? [
Ko<2nz k2 + p22> =/ <2nzp) / dx(x? — D)"Y exp(—2r zkx) J_1/2
T3 2 To 1
T
x <271sz\/)€2 — 1) (A1.15)
0

where J,(y) is Bessel function.
The summation ovet in (A1.14) is performed explicitly, and we obtain at> 1

. (=¥ coshfu/T)k] . 1 1 exp(—2mwzx) m
; k2 —|—a2 eXK(—ankx) = _ﬁ -+ @ - (,1274—1 COoS ?a .

(A1.16)

By substituting (A1.16) into (Al.15) and performing integration owerwe obtain the
following expression for the sum of the third and last terms in (A1.3):

To\* ¢ €oS27p®/ o) cosl(/ To) p] \/? \/7 @ " A
(1 S €l o e )

p=1
(A1.17)

whenT « A « Ty, and
/ o To [T A
T cos( 27— )cos( £ )| 22 /20 expl — —
2 oy o) 2TV A To

T 1 - 1 1
_ —A =4+ = Al1.18
VA 1212 + 1)% exp( 72" Tozﬂ (A118)

whenT, To < A.

Appendix 2

When rewriting the Hamiltonian (2) in terms of one-dimensional fields(equation (3)),
the back-scattering component(x) of the impurity potentialV (x) is represented in the
form of a wave packet of widthk| — 2k ~ A/ Vp:

A(x) =) Vi cos((k — 2kr)x) (A2.1)
k

where V; are the Fourier harmonics df(x). Consider Coulomb impurities distributed in
the bulk of the semiconductor at points. For a high concentration of impurities when
(ry <« L, where(r) is the average distance between impuritiégy) takes the form

L+ x+ /(L +x)2+ p?
> log (A2.2)
Onz) | L—x 4 /(L —x)2+ p?

i

Vix) =

o2

eo(r)

wherep; = (y;, z;) andeg is the bulk dielectric permeability.
The logarithm is nearly a constant, and

f Nimp
eo (kp(r))?

Vo, = (A2.3)
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where n;,,, ~ (L/(r))® is the number of impurities in the approximate volumé,
krp(r) > 1. WhenLA/Vr < 1, A(x) is almost independent of and is of the order
of

2
e Nimp

Arx —— 5
eo{r) (kp(r))
Recalling equation (44), the criterion fax = constant whew?/Vy > 1 takes the form
L m 1/4
— & (kp(r)Y? [Iog ()] ) (A2.5)
(r) A
This inequality holds easily for small rings.

(A2.4)
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